Plasma-Modified, Epitaxial Fabricated Graphene on SiC for the Electrochemical Detection of TNT
نویسندگان
چکیده
Using square wave voltammetry, we show an increase in the electrochemical detection of trinitrotoluene (TNT) with a working electrode constructed from plasma modified graphene on a SiC surface vs. unmodified graphene. The graphene surface was chemically modified using electron beam generated plasmas produced in oxygen or nitrogen containing backgrounds to introduce oxygen or nitrogen moieties. The use of this chemical modification route enabled enhancement of the electrochemical signal for TNT, with the oxygen treatment showing a more pronounced detection than the nitrogen treatment. For graphene modified with oxygen, the electrochemical response to TNT can be fit to a two-site Langmuir isotherm suggesting different sites on the graphene surface with different affinities for TNT. We estimate a limit of detection for TNT equal to 20 ppb based on the analytical standard S/N ratio of 3. In addition, this approach to sensor fabrication is inherently a high-throughput, high-volume process amenable to industrial applications. High quality epitaxial graphene is easily grown over large area SiC substrates, while plasma processing is a rapid approach to large area substrate processing. This combination facilitates low cost, mass production of sensors.
منابع مشابه
Facile Synthesis and Electrochemical Performance of Graphene-Modified Cu2O Nanocomposite for Use in Enzyme-Free Glucose Biosensor
Graphene-modified Cu2O nanocomposite was synthesized under facile microwave irradiation of an aqueous solution and has been investigated as an enzyme-free glucose biosensor. Morphology and crystal structure of the graphene-modified Cu2O nanocomposite were investigated by using electron microscopy and X-Ray Diffraction (XRD) analyses. Also, the electrochemical performan...
متن کاملBiomedical Application of a Novel Nanostructured-based Electrochemical Platform for Therapeutic Monitoring of an Antiepileptic Drug; Gabapentin
Herein, gold nanoparticle had been successfully synthesized through a simple, inexpensive and clean electrochemical technique. Gold nanoparticles were directly deposited on the electrode surface using an electrochemical strategy. Then, the electrochemical deposition parameters (such as applied potential and deposition time) were optimized. 1.1 V and 250 s were applied as the optimal electrodepo...
متن کاملHighly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملStudy and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode
A graphene nanosheets (GNS) film coated glassy carbon electrode (GCE) was fabricated for sensitive determination of tyrosine (Tyr). The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalyt...
متن کاملSensitive Electrochemical Determination of Gallic Acid: Application in Estimation of Total Polyphenols in Plant Samples
A modified electrode was prepared by modification of the carbon paste electrode (CPE) with graphene nano-sheets. The fabricated modified electrode exhibited an electrocatalytic activity toward gallic acid (GA) oxidation because of good conductivity, low electron transfer resistance and catalytic effect. The graphene modified CPE had a lower overvoltage and enhanced electrical current respect to...
متن کامل